Miksi linnut eivät törmää toisiinsa?

Kun lentokoneita on nykyään taivaalla entistä enemmän, niin törmäyksien välttämisestä on tullut iso kysymys. Autojenkin pitäisi osata väistää automaattisesti toisiaan ja jalankulkijoita. Ja sinunkin pitäisi pystyä kulkemaan törmäilemättä kanssakulkijoihin. Ratkaisua näihin pohdiskelessamme tulee myös miettineeksi, miksi linnut, kalat ja hyönteiset, jotka liikkuvat suurissa parvissa nopeasti suuntaansa vaihtaen, eivät törmää toisiinsa.

Linkin videossa lähes 1,3 miljoonaa flamingoa kokoontuu yhteen paikkaan. Huomaatko videolla yhtään törmäystä?
https://www.bbc.co.uk/programmes/p079v09b

Pääosa törmäysten välttämistutkimuksista kohdistuu nykyään teknologioihin, joilla ihmisten kehittämät liikkuvat laitteet tunnistavat törmäysriskin ja pyrkivät välttämään törmäyksen. Eläinten vastaavaa toimintaa on kuitenkin tutkittu pidempään – yli 50 vuotta. Tutkimusten tekeminen ei ole päättynyt, vaan entistä kehittyneempien mitta- ja kuvauslaitteiden avulla tästä saadaan koko ajan lisää tietoa.

Tuoreessa tutkimuksessaan Karmaker kumppaneineen (2019) tarkasteli undulaattien lentoratoja. Undulaatit pyrkivät pitämään lentosuuntansa samana, mutta tullessaan hyvin lähelle esteen eteen, ne tekevät pienen korjausliikkeen pyrkien palauttamaan saman lentosuunnan mahdollisimman pienellä liikkeenmuutoksella.

Kun kaksi undulaattia on lentämässä suoraan päin toisiaan, molemmat tekevät lähellä toisiaan lähes samankaltaisen suunnanmuutoksen. Ne kääntyvät molemmat hieman ylöspäin ja oikealle (Schiffner ym., 2016). Vastaavassa tilanteessa mehiläiset sen sijaan kääntyvät vasemmalle (Groening, ym., 2012). Eri eläinten lentokäyttäytymisten eroista ovat Altshuler & Srinivasan (2018) äskettäin kirjoittaneet mainion avoimesti saatavissa olevan katsauksen. Voimme tunnistaa monia erilaisia visuaaliseen havaintoon perustuvia strategioita.

Parvessa kulkiessaan eläimet eivät suinkaan “seuraa johtajaa”, vaan reagoivat koko parven liikkeeseen. Tätä voi verrata vaikka urheilustadionilla ihmisten tekemiin “aaltoihin”. Seuraamme, miten iso liike tapahtuu ja kun lähinnaapuri nostaa kätensä, reagoimme siihen, ja iso massa näyttää toimivan kuin yhdestä ajatuksesta.

“Stadion aalloissa” näemme paljon pieniä yksilötason poikkeamia. Aina ei ajoitus mene kohdalleen, mutta virheet ovat usein pieniä. Harvoin näemme jonkun pomppaavan ylös yksin aivan väärään aikaan. Samanlaisia pieniä virheitä todetaan parvieläinten lennossa. Siivet saattavat koskettaa toisiaan ja naapuria saatetaan tönäistä. Mutta nämä ovat niin pieniä kolhuja, etteivät ne menoa haittaa.

Isoilla, lähinnä yksinään liikkuvilla linnuilla, ei tällaista reaktiokykyä ja automaattista väistämiskäyttäytymistä ole. Siksi niiden kovempia törmäyksiä toisinaan havaitaankin. Ihmiset ovat vähän niiden kaltaisia. Vaikka mekin osaamme yleensä liikkua ihmisvilinässä, niin toisinaan, varsinkin kun kävelemme vauhdikkaasti, törmäyksiä tulee. Yleensä silloin, kun toinen ottaa väistöaskeleen vasemmalle ja toinen oikealle –liian myöhään. Kännyköiden tuijottaminen on todennäköisesti lisännyt törmäysten määrää moninkertaisesti. Siihen ei eläin pysty.

PS. New Yorkin alueparlamentti on toukokuussa 2019 esittänyt lakia 25-250 dollarin sakosta jalankulkijoille, jotka kirjoittavat kännykällä kävellessään. Ellei kyse ole hätätilanteesta. Tähänkään ei eläin pysty.

Viitteet

Altshuler, D. L., & Srinivasan, M. V. (2018). Comparison of visually guided flight in insects and birds. Frontiers in neuroscience, 12, 157. https://www.frontiersin.org/articles/…/fnins.2018.00157/full

Groening, J., McLeod, L., Liebsch, N., Schiffner, I., & Srinivasan, M. V. (2012). When left is right and right is wrong: Collision avoidance in honeybees. Frontiers in Behavioral Neuroscience, 235.

Karmaker, D., Schiffner, I., & Srinivasan, M. (2019). Budgerigars adopt robust, but idiosyncratic flight paths. bioRxiv, 598680.

Schiffner, I., Perez, T., & Srinivasan, M. V. (2016). Strategies for pre-emptive mid-air collision avoidance in budgerigars. PloS one, 11(9), e0162435.

Kauhukertomus huomaamatta eksymisestä – ei heikkohermoisille

Kuvittele poistuvasi bussista mennäksesi ystäväsi luokse kylään, mutta et tiedäkään, missä hän tarkalleen asuu. Onneksi sinulla on hänen osoitteensa kännykässäsi ja kännykässäsi navigaattoriohjelma. Seuraamalla tarkasti navigaattoria löydät oikean kadun, talon ja rapun. Hieno juttu. Kaveri vaan ei ollut kotona. Meinaat soittaa hänelle, mutta kännykästä loppuukin akku. Kaivat taskujasi ja tajuat pudottaneesi avaimesi. Ehkä sinne bussipysäkille kännykkää kaivaessasi. Osaatko nyt takaisin pysäkille ilman navigaattoria?

Tällaisen tarinan esittivät Brügger kumppaneineen (2019) perusteluksi tutkimukselleen. Heidän ajatuskulkunsa oli, että mitä paremmaksi navigaattoriohjelmat ovat tulleet, sitä vähemmän me seuraamme ympäristöämme, ja kun navigaattoria ei olekaan käytettävissä, eksymme. Emme havainnoineetkaan ympäristöä vaan navigaattoria. Tarvitsemme siis navigaattoriohjelmia, jotka auttaisivat meitä myös havainnoimaan ympäristöämme paremmin.

Kuva: Jutussa kuvatun tutkimuksen kuvitusta. Koehenkilöllä navigaattori tabletissa ja silmäliikkeitä mittaavat lasit.

Tutkimuksessa simuloitiin kyseistä tilannetta rakentamalla neljä erilaista navigaattoriohjelmaa. Koehenkilöt kulkivat reitin pisteestä A pisteeseen B navigaattorin avulla. Ja sen jälkeen heiltä otettiin navigaattori pois ja kehoitettiin menemään takaisin pisteestä B pisteeseen A.

Navigoinnissa on kaksi elementtiä: 1) tiedä missä olet, 2) tiedä mihin suuntaan mennä. Modernit navigaattorit näyttävät suoraan, missä olet ja mihin suuntaan pitäisi mennä. Navigaattori hoitaa siis molemmat asiat, joita sinun tarvitsisi tietää, ettet eksyisi. Varioimalla navigaattoriohjelmassa sitä, miten automaattisesti ohjelma kertoi, missä olet ja mihin suuntaan mennä, he selvittivät, onko tällä vaikutusta reitinmuistamiseen.

Ympäristön havainnointia on kahdenlaista: tavoitteellista ja satunnaista. Käyttäessämme navigaattoria ympäristön havainnointi jää satunnaiseksi. Emme huomaa maamerkkejä, koska keskitymme kännykänruutuun. Emme ajattele kääntymistä vasempaan, vaan tuijotamme, liikkuuko ruudulla piste annettua reittiä pitkin. Tuomalla ohjelmaan tavoitteellisia elemettejä, esimerkiksi muistutuksia maamerkeistä ja sitä, että sijaintimme karttaohjelmassa näkyy vain, kun sitä tietoa itse siltä pyydämme, saattaisivat ohjata tavoitteellisempaan ympäristön havainnointiin.

Tulokset olivat varsin selkeitä. Riippumatta navigaattorin mallista koehenkilöt löysivät helposti pisteestä A pisteeseen B. Takaisin löytäminen olikin hankalampaa. Mitä enemmän navigaattori oli auttanut tietämään missä olet ja tietämään mihin suuntaan mennä, sitä huonommin koehenkilöt löysivät takaisin. Eksyneiden määrä oli todella iso. Onneksi tutkimusavustaja vihkoineen kulki koko ajan perässä. Koehenkilökato olisi ollut harmillinen juttu tutkimukselle.

Toisaalta ohjelman vaatimukset vuorovaikutukseen sen kanssa heikensivät myös merkittävästi tuloksia. Mitä enemmän ruutua piti tuijottaa, sitä vähemmän jäi huomiokykyä ympäristölle. Mielenkiintoista tutkimuksessa oli myös ihmisten omat oletukset. Ennen tehtävän aloitusta suurin osa piti reittiä helppona, mutta lopulta yli kolmannes tutkituista terveistä aikuisista teki paluusuunnistuksessa virheitä.

Vielä on navigaattoreissa siis parantamisen varaa. Sen sijaan, että ne sanovat “käänny vasemmalle” olisi parempi versio sellainen, joka sanoisi, että “kohta tuosta kioskin kohdalta käänny kohti kauempana näkyvää kirkkoa … Huomasitko, että käännyit äsken vasemmalle”. Näin navigaattori auttaisi meitä tietämään, missä olemme, löytämään reitin ja tarkkailemaan samalla ympäristöämme – ja ehkä löytämään takaisinkin, jos akku loppuu. Nyt kun navigaattorit eivät vielä sitä tee, niin on hyvä muistaa tehdä sitä itse –tietoisesti ja tavoitteellisesti.

Älä hukkaa itseäsi navigaattoriin. Reitin miettiminen kulkiessa on myös hyvää spatiaalisten taitojen harjoittelua. Saatat siinä samalla huomata ja löytää ympäristöstäsi jotain uutta ja mielenkiintoista. Tai jotain kaunista, joka lepuuttaa mieltä.

Viitteet

Brügger, A., Richter, K. F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior?. Cognitive research: principles and implications, 4(1), 5.




Vasen vai oikea? Vasen tietysti

Tarvitsemme vasen ja oikea -käsitteitä usein. Oli kyse sitten ystävän ohjaamisesta kadunkulmassa tai lääkärin päätöksestä, kumpi polvi pitikään leikata. Yksilöllisiä eroja tässä taidossa on paljon. Ja on haastavampaa kertoa vasen tai oikea toisesta ihmisestä kuin itsestä.

Constant ja Mellet (2018) tarttuivat tähän vanhaan kysymykseen vasemman ja oikean sekaantumisesta kysymällä vasen- ja oikeakätisiltä aikuisilta onko merkitty käsi tikku-ukolla vasen vai oikea. Tehdäkseen tehtävästä haastavamman, kädet saattoivat kuvassa olla ristissä ja hahmo edestä tai selkäpuolelta kuvattuna.

Vastakkain oli kaksi aiempaa havaintoa. Marzoli ja kumppanit (2015) olivat havainneet, että sekä vasen- että oikeakätisille oikean käden tunnistaminen olisi helpompaa. Hommelin (2001) toimintateoria taas ennustaisi, että se käsi jota itsekin käytät, pitäisi olla helpommin tunnistettavissa.

Constantin ja Melletin tulokset tukivat jälkimmäistä toimintateoreettista näkökulmaa, mutta vain vasenkätisillä. Vasenkätisille vasemman tunnistaminen onnistui nopeammin ja vähemmillä virheillä kuin oikeakätisillä. Oikeakätisillä eroa vasemman ja oikean käden tunnistamisten välillä ei havaittu.

Naisten ja miesten välillä löytyi myös ero miesten vähempinä virhesuorituksina. Tämä ei ollut yhteydessä kätisyyteen, mutta molemmilla sukupuolilla visuo-spatiaaliseen hahmottamiseen kyllä. Paremmin mentaalisen rotaation tehtävässä suoriutuvat, tunnistivat myös merkityn käden sujuvammin.

Vasen voi siis vasenkätisille olla erityisempi juttu kuin oikea oikeakätisille. Etaugh ja Brausam (1978) arvelivatkin, että sen huomaaminen, että on “kätinen” on vahvempaa vasenkätisillä, koska se toimintona pistää enemmän silmään oikeakätisten maailmassa.

Siksi varmaan vasenkätisillä on oma vestivaalikin, mutta oikeakätisillä ei… http://almu.fi/vasurit.html

Viitteet

Constant, M., & Mellet, E. (2018). The Impact of Handedness, Sex, and Cognitive Abilities on Left–Right Discrimination: A Behavioral Study. Frontiers in psychology, 9, 405.

Etaugh, C., and Brausam, M. (1978). Sensitivity to laterality as a function of handedness. Percept. Mot. Skills 46, 420–422.

Hommel, B., Musseler, J., Aschersleben, G., and Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878; discussion 878–937.

Marzoli, D., Lucafo, C., Pagliara, A., Cappuccio, R., Brancucci, A., and Tommasi, L. (2015). Both right- and left-handers show a bias to attend others’ right arm. Exp. Brain Res. 233, 415–424.

Missä on “missä” aivoissa?

“Mistä me tulemme? Mitä me olemme? Minne me menemme?” on ranskalaisen Paul Gauguinin kuuluisin teos. Näillä tähän teokseen viittaavilla sanoilla aloittavat myös Cona ja Scarpazza (2019) uuden meta-analyysinsä esittelyn.

He kävivät läpi 133 aivokuvantamistutkimusta löytääkseen vastauksen kysymykseen, missä ihminen käsittelee aivoissaan kysymystä “Missä minä olen” .

Missä -kysymys hajoaa aivoissa useaan prosessiin: tarkkaavuuden kohdentamiseen ympäristön “missä”-informaatioon, tarkkaavuuden kohteen vaihtamiseen, tarkkaavuuden kohdentamiseen omaan ajatukseen “missä minä olen”, kognitiivisten karttojen tallentamiseen ja reittien muistamiseen sekä tämän karttainformaation käsittelyyn ja muokkaamiseen mielessä, kun liikkuessamme “missä missä olen” muuttuu.

Missä ei siis ole yhdessä paikassa mielessämme. Kun eksymme, niin jokin osa näistä prosesseista on mennyt pieleen. Kun ymmärrämme paremmin, miten ympäristössä navigointi päässä tapahtuu, saatamme löytää paremmin uudelleen takaisin kartalle. Miksi en nyt tiedä, missä olen? Navigoinnin tietoinen harjoittelu auttaa.

Viitteet:

Cona, G., & Scarpazza, C. (2019). Where is the “where” in the brain? A meta‐analysis of neuroimaging studies on spatial cognition. Human brain mapping.