Vasen vai oikea? Vasen tietysti

Tarvitsemme vasen ja oikea -käsitteitä usein. Oli kyse sitten ystävän ohjaamisesta kadunkulmassa tai lääkärin päätöksestä, kumpi polvi pitikään leikata. Yksilöllisiä eroja tässä taidossa on paljon. Ja on haastavampaa kertoa vasen tai oikea toisesta ihmisestä kuin itsestä.

Constant ja Mellet (2018) tarttuivat tähän vanhaan kysymykseen vasemman ja oikean sekaantumisesta kysymällä vasen- ja oikeakätisiltä aikuisilta onko merkitty käsi tikku-ukolla vasen vai oikea. Tehdäkseen tehtävästä haastavamman, kädet saattoivat kuvassa olla ristissä ja hahmo edestä tai selkäpuolelta kuvattuna.

Vastakkain oli kaksi aiempaa havaintoa. Marzoli ja kumppanit (2015) olivat havainneet, että sekä vasen- että oikeakätisille oikean käden tunnistaminen olisi helpompaa. Hommelin (2001) toimintateoria taas ennustaisi, että se käsi jota itsekin käytät, pitäisi olla helpommin tunnistettavissa.

Constantin ja Melletin tulokset tukivat jälkimmäistä toimintateoreettista näkökulmaa, mutta vain vasenkätisillä. Vasenkätisille vasemman tunnistaminen onnistui nopeammin ja vähemmillä virheillä kuin oikeakätisillä. Oikeakätisillä eroa vasemman ja oikean käden tunnistamisten välillä ei havaittu.

Naisten ja miesten välillä löytyi myös ero miesten vähempinä virhesuorituksina. Tämä ei ollut yhteydessä kätisyyteen, mutta molemmilla sukupuolilla visuo-spatiaaliseen hahmottamiseen kyllä. Paremmin mentaalisen rotaation tehtävässä suoriutuvat, tunnistivat myös merkityn käden sujuvammin.

Vasen voi siis vasenkätisille olla erityisempi juttu kuin oikea oikeakätisille. Etaugh ja Brausam (1978) arvelivatkin, että sen huomaaminen, että on “kätinen” on vahvempaa vasenkätisillä, koska se toimintona pistää enemmän silmään oikeakätisten maailmassa.

Siksi varmaan vasenkätisillä on oma vestivaalikin, mutta oikeakätisillä ei… http://almu.fi/vasurit.html

Viitteet

Constant, M., & Mellet, E. (2018). The Impact of Handedness, Sex, and Cognitive Abilities on Left–Right Discrimination: A Behavioral Study. Frontiers in psychology, 9, 405.

Etaugh, C., and Brausam, M. (1978). Sensitivity to laterality as a function of handedness. Percept. Mot. Skills 46, 420–422.

Hommel, B., Musseler, J., Aschersleben, G., and Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878; discussion 878–937.

Marzoli, D., Lucafo, C., Pagliara, A., Cappuccio, R., Brancucci, A., and Tommasi, L. (2015). Both right- and left-handers show a bias to attend others’ right arm. Exp. Brain Res. 233, 415–424.

Onko isompi pää älykkyyden merkki?

Tätä  klassista kysymystä on nyt tutkittu aiempia tutkimuksia suuremmalla otoksella tehtynä.

Aivojen koon yhteyttä älykkyyteen on pohdittu koko älykkyystutkimuksen historian ajan. Onpa miesten isommilla aivoilla joskus perusteltu sen ylivertaisuuttakin, kunnes jolle kulle tuli norsu mieleen. Koko kropan koko tulee ottaa huomioon aivojen koon merkitystä arvioitaessa.

Mitä enemmän prosessoreita, sitä enemmän tehoa tietokoneessa, on nykyinen analogia sille, miksi isommat aivot olisivat älykkäämmät. Nyt lähes 14 000 yli 40-vuotiaan henkilön otokseen perustuen englantilainen tutkimusryhmä (Nave ym., 2018) tarkasteli tätä kysymystä koittaen kontrolloida mahdollisimman monia väliin tulevia tekijöitä, kuten sukupuoli, pituus tai taloudellinen tausta.

Mittarina toimi ns. joustavan älykkyyden monivalintatesti, jossa oli 14 kysymystä. Joustavalla älykkyydellä tarkoitetaan tehtäviä, joissa asioiden tietämisellä (kristalloitunut älykkyys) on vähäisempi merkitys ja päättelykyvyllä suurempi. Näistä kysymyksistä 8 sisälsi numeerista päättelyä ja loput olivat pääasiassa analogiapäättelytehtäviä tyyliin: poika on isälle sama kuin vasikka on: (a) kuujuustolle, (b) lehmälle, (c) punainen, (d) kuutille. Ymmärsit idean? Tehtävät olivat hieman haasteellisempia kuin keksitty esimerkkini. Isolla joukolla vastausten oikeellisuus noudatti normaalijakaumaa.

Sitten itse vastaukseen: Ovatko isommat aivot fiksummat kuin pienemmät? Kyllä. Mutta tosi vähän. Aivojen koko – kun muut tekijät huomioitiin – selitti älykkyyden vaihtelusta vaivaiset 2%. Ja koulusaavutuksista alle prosentin. Karkeasti laskien yksi kuutiosentti (1 cm x 1 cm x 1 cm) lisää aivomassaa, erityisesti sen harmaata kuorikerrosta, vastasi noin 5 kuukauden opiskelua. Kuutiosentti on aika paljon aivoa…

Tulosta ei heilauttanut, tutkittiin sitten nuorempia tai vanhempia ikäryhmiä, eikä sukupuolten välillä ollut eroja aivojen koon yhteydessä älykkyyteen. Naisilla on pienemmät aivot, mutta kun pituus kontrolloidaan, niin sukupuolierot katoavat. Toisaalla Richie ym. (2018) on esittänyt, että naisilla solutiheys olisi keskimäärin suurempi kuin miehillä, jolloin pelkkä koko ei välttämättä kerro kaikkea. Transistoreita millimetrillä voi olla olennaisempaa…

Mitä tästä opittiin? Tultiinko viisaammaksi? No paljon. Kuten tieteessä aina, tulos herättää enemmän uusia kysymyksiä kuin antaa vastauksia. Miten iso on kasvatuksen ja koulutuksen vaikutus aivojen kokoon? Sitä emme tiedä. Ravinnon merkitystäkään ei tässä kunnolla saatu kaiveltua. Perintötekijöiden rooli aivojen massan ja rakenteen muotoutumisessa on vielä hetken aikaa tutkijoille mysteeri. Kuten myös se, onko älykkyyden kannalta olennaisempaa koko aivojen koko, vai jonkin osan koko. Tämän tutkimuksen mukaan harmaan kuorikerroksen koolla oli isompi merkitys kuin sisäosien valkealla aineella, joka yhdistää aivoalueita toisiinsa.

S-koon hattuja käyttävälle tulos on helpotus, muttei XL-päänkään leuan tarvitse repsahtaa. Koolla on väliä, mutta aika vähän. Muilla tekijöillä on ratkaisevampi merkitys. Niistä muista tekijöistä sitten myöhemmin lisää.

Viitteet

Nave, G., Jung, W.H., Karlsson Linnér, R., Kable, J.W., Koellinger, P. (2018). Are Bigger Brains Smarter? Evidence From a Large-Scale Preregistered Study. Psychological Science.

Ritchie S. J., Cox S. R., Shen X., Lombardo M. V., Reus L. M.,… & Deary I. J. (2018). Sex differences in the adult human brain: Evidence from 5216 UK Biobank participants. Cerebral Cortex, 28, 2959–2975.

Matikka-ahdistuksesta 2–5 -luokkalaisilla

Jyväskyläläinen tutkimusryhmä (Sorvo ym., 2019) seurasi vuoden välein tehdyllä kahdella mittauksella 2–5 -luokkalaisten kehitystä laskutaitojen sujuvuudessa ja matematiikkaan kohdistuvassa ahdistuneisuudessa tavoitteenaan tarkastella näiden välisiä yhteyksiä. Tutkimus lienee ensimmäinen alakouluikäisillä tehty seuranta matikka-ahdistuksesta.

Aiemmista analyyseistä poiketen (esim. kansallisten kokeiden seurantatutkimus, Räsänen & Närhi, 2013) keskiarvopisteet matematiikkaa kohtaan tunnetussa ahdistuneisuudessa laskivat. Yleensä on todettu ahdistuneisuuden kasvavan kouluvuosien myötä. Selitystä tulokselleen tutkijat eivät esittäneet, mutta miettivät, voisiko se johtua suomalaisesta koulusta. Pidempi tarkasteluväli ilmiön varmistamiseksi tarvitaan.

Mielenkiintoa luonnollisesti herättää tarkastelu ahdistuneisuuden ja taitojen välisestä suhteesta. Heikompi suoriutuminen aritmetiikassa ensimmäisessä mittauksessa ennusti epäonnistumispelon kasvua toisessa mittauksessa, mutta ei toisin päin. Ahdistuneisuuden määrä ensimmäisessä mittauksessa ei ennustanut suoriutumista aritmeettisessa sujuvuudessa myöhemmin.

Tämä tulos noudattaa tuttua kaavaa. Epäonnistumiset kasvattavat sen pelkoa. Suhtautuminen sinällänsä ei kuitenkaan –ainakaan lyhyellä aikavälillä– vaikuta oppimiseen. Siksi opetuksessa onnistumiskokemusten tuottaminen on aina tehokkaampi lääke ahdistuksen vähentämiseen ja motivaation lisäämiseen kuin keskittyminen ahdistukseen ja motivaatioon, niitä kuitenkaan väheksymättä.

Viitteet

Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., Tolvanen, A., & Aro, M. (2019). Development of math anxiety and its longitudinal relationships with arithmetic achievement among primary school children. Learning and Individual Differences, 69, 173-181.

Räsänen, P. & Närhi, V. (2013). Heikkojen oppijoiden koulupolku. Teoksessa J. Metsämuuronen (toim.), Perusopetuksen matematiikan oppimistulosten pitkittäisarviointi vuosina 2005–2012. (ss. 173–224). Koulutuksen seurantaraportit 4/2013. Helsinki: Opetushallitus.

Miten opimme ajattelemaan matemaattisesti?

Tätä kysymystä pohti kanadalainen Brain and Mind Institutin porukka (Hawes ym. 2019) tutkiessaan 4–11 -vuotiaiden lasten lukukäsite-, hahmotus- ja toiminnanohjauksellisten taitojen yhteyksiä matemaattisiin taitoihin (matemaattinen ja geometrinen päättely).

He tekivät näiden taitojen mittareiden välille ns. latenttien faktoreiden analyysin. Latentti tarkoittaa piilossa olevaa, mutta yksikertaistettuna kuvaten: he etsivät isosta mittarimäärästä niitä tehtäväryppäitä, jotka selittäisivät parhaiten eri mittareiden välillä olevia yhteyksiä toisiinsa.

Kaikki kolme, lukukäsite-, hahmotus- ja toiminnanohjaukselliset taidot ovat yhteydessä toisiinsa, mutta ainoastaan hahmottaminen ja lukukäsite selittivät matemaattisia taitoja. Tutkijat tarkastelivat vielä, voisiko toiminnanohjaus toimia jotenkin välittävänä tekijänä matemaattisten taitojen kehitykselle,
mutta tälle mallille ei aineisto antanut tukea.

Tutkimus korostaa entisestään hahmottamisen taitojen keskeisyyttä matemaattisen ajattelun kehitykselle. Toiminnanohjauksellisten taitojen vähäisempi rooli matemaattisten tehtävien ratkaisuun oli yllätys, koska se on kuitenkin vahvassa yhteydessä hahmottamiseen ja lukukäsitteeseen. Tämä tulos osoittaa, että hahmottaminen ja toiminnanohjaus, vaikka ovatkin läheisessä suhteessa toisiinsa, ovat selkeästi erillisiä “piilossa olevia” tekijöitä taitojen kehityksen taustalla.

Viitteet

Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 68-90.

—-
Samainen Western Universityn ryhmä on julkaissut osan testitehtävistään myös vapaaseen käyttöön (http://www.numeracyscreener.org). Kyseisen nopean (1-2 min) lukukäsitettä mittaavan tehtävän voi kuka tahansa ladata netistä. Sivustolla on ohjeet ja laskukone tulosten vertaamiseksi kanadalaisiin normeihin.

(PS. Pyynnöstä voi Niilo Mäki Instituutista saada tämän lukukäsitetestiin ohjeistukset espanjaksi ja viitearvotietoja meksikolaisilta ekaluokkalaisilta, jos jollakulla sellaiselle nyt sattuu olemaan tarve. Ja jos tarve on taco-chilin polttava, niin voimmehan kääntää ne myös suomeksi).

Hahmottamisen taito yhdistää lukumääräisyyden lukusanoihin

Lukumääräisyyden tajulla tarkoitetaan kykyä hahmottaa lukumääräisyyttä ilman, että sitä tarvitsee laskea. Oheisen kuvion kahdesta esimerkistä pystymme hahmottamaan kummalla puolella on enemmän pisteitä – laskematta ja tietämättä tarkasti kuinka monta niitä oikeastaan on.

Lukumääräisyyden taju näyttäisi olevan myötäsyntyinen taito. Se löytyy vauvoista vaareihin kuten myös eläimiltä. Siksi sen on ajateltu olevan yksi matemaattisen ajattelumme perustoista. Se ei näyttäisi edellyttävän lainkaan kielellisiä taitoja.

Lonnemann ja kumppanit (2019) halusivat selvittää, missä määrin tämä lukumäärisyyden taju on yhteydessä kielellisen matematiikan kehitykseen lapsilla (4–6 -vuotiaat, n=156).

He esittivät oletuksen, että visuo-spatiaaliset taidot toimisivat tässä välittävänä tekijänä. Lukumääräisyyden hahmottaminen tukeutuu osin visuo-spatiaalisiin taitoihin, mutta myös määrien kielellinen esitys (yksi, kaksi, kolme…) linkittyy ainakin jo kouluiässä osittain tilaan sijoittuvaan mielikuvaan lukujonosta. Pienemmän luvut yleensä vasemmalla, oikealle päin kasvaen.

Oletus sai vahvaa tukea tuloksista. Lukumääräisyyden tajun ja lukujonotaitojen väliset yhteydet selittyivät täysin visuo-spatiaalisilla taidoilla. Toki yksilöllisestä vaihtelusta näissä taidoissa malli selitti vain osan. Tutkittavaa taitojen kehitykseen vaikuttavista tekijöistä riittää jatkossakin.

Viitteet

Lonnemann, J., Müller, C., Büttner, G., & Hasselhorn, M. (2019). The influence of visual–spatial skills on the association between processing of nonsymbolic numerical magnitude and number word sequence skills. Journal of experimental child psychology, 178, 184-197.

Auttaako hahmottamisen harjoittelu matematiikassa?

Mekin olemme täällä kirjoittaneet paljon matemaattisten taitojen yhteyksistä hahmottamisen taitoihin, josta on kertynyt paljon vahvaa näyttöä.

Tästä nousee automaattisesti kysymys, parantaisikohan hahmottamisen harjoittelu suoraan myös matemaattisia taitoja. Rodán ja kumppanit (2019) päättivät kokeilla tätä vajaan sadan tokaluokkalaisen (7 v.) aineistolla. Puolet porukasta laitettiin harjoittelemaan oheisen kuvan kaltaisia mentaalisen rotaation tehtäviä yhteensä 90 minuutin ajan, toisen puolen toimiessa kontrolliryhmänä.

Harjoittelu paransi selvästi sekä poikien että tyttöjen mentaalisen rotaation taitoja, mutta laskutaitohin tämä parannus ei vaikuttanut. Tutkijat pohtivat tulokselleen kahta mahdollista selitystä. Toisaalta harjoitteluaika oli varsin lyhyt ja toisaalta tässä iässä laskutehtävien ratkaiseminen tukeutuu vahvasti luettelemiseen ja siten kielellisiin taitoihin.

Tulemme jatkossa näkemään entistä enemmän tällaisia tutkimuksia, joissa hahmottamisen harjoittelua linkitetään matematiikkaan. Lisääntyvä tutkimus tulee kertomaan, millaisesta harjoittelusta mahdollisesti voisi olla hyötyä, ja millaisesta taasen ei. Molemmat tulokset ovat yhtä tärkeitä, kun opetuksen kehittämistä mietitään.

Viitteet

Rodán, A., Gimeno, P., Elosúa, M. R., Montoro, P. R., & Contreras, M. J. (2019). Boys and girls gain in spatial, but not in mathematical ability after mental rotation training in primary education. Learning and Individual Differences, 70, 1-11.

Kun ei meinaa muistaa: PIIRRÄ SE!

Meade ja kumppanit (2018) tutkivat, miten ratkaista kokeellisesti ikivanhaa ongelmaa: asiat ei pysy mielessä ja mitä vanhemmaksi sitä tulee, sitä huonommaksi tilanne muuttuu, siis mistä löytyy apu.

Tutkimukseen osallistui kaksi ryhmää: 20-vuotiaita yliopisto-opiskelijoita ja 80-vuotiaita vanhuksia. Tehtävänä oli opetella sanalistoja. Toinen ryhmä kirjoitti sanoja oppiakseen ne, ja toinen piirsi. Sekä nuoremmissa että vanhemmassa ryhmässä piirtäjien ryhmä päihitti kirjoittajat.

Toisessa kokeessaan he lisäsivät kolmanneksi harjoittelumuodoksi assosiaatiosanojen kirjoittamisen. Sen sijaan, että piti kirjoittaa itse sanaa monta kertaa, kirjoitettiinkin muistiin sanaan liittyviä piirteitä (tuoli – jalat, selkänoja, jne.). Siis sitä joutui mielessään kuvittelemaan. Tämä toimi vähän paremmin kuin sanojen kirjoittaminen, mutta edelleen piirtäminen toimi parhaiten.

Vaikka nuoret yleensä muistavat paremmin kuin vanhat, niin vanhat piirtäjät päihittivä tuloksissa nuoret kirjoittajat. Taustalla lienee piirtämisen mukanaan tuoma parempi episodisen (tapahtuma-)muistin edustus muistimme lokerikoissa.

Tätä tulosta ei kannata kirjoittaa muistiin. Piirrä se!

Viitteet

Meade, M. E., Wammes, J. D., & Fernandes, M. A. (2018). Drawing as an encoding tool: Memorial benefits in younger and older adults. Experimental aging research, 44(5), 369-396.

Mikä viikonpäivä oli 18. syyskuuta 1990?

No tietysti tiistai.

Tämä kalenterilaskeminen on yksi ns. Savant-taidoista, joissa ihminen kykenee äärettömän nopeaan kognitiiviseen suoritukseen, johon harjoittelematon ei edes pysty. Näitä kapea-alaisia taitoja havaitaan toisinaan autismin spektrin kirjossa ja myös muilla henkilöillä, jotka ovat käyttäneet ison kasan tunteja yksittäisen, hyvin kapean taidon harjoitteluun.

Synestesia on toinen mielenkiintoinen aivojen erilaisuus. Synestesioita on useanlaisia, mutta yhteistä niille on eri aistiperustaisten havaintojen ja mielikuvien yhdistyminen. Jokin tuoksu, kirjain tai äänenkorkeus voi esimerkiksi luoda värimielikuvan. Prosessi on synesteetikoilla automaattinen, mutta osittain myös harjoittelemalla tuotettavissa.

Hughes kumppaneineen (2019) yhdisti nämä kaksi mielen erityisyyttä tutkimuksessaan. Siinä kaksi ryhmää, kalenterisynesteetikot ja normaalit kontrollit harjoittelivat kalenterilaskemista. Kalenterisynesteetikoille kalenteri piirtyy yleensä tilaan sijoittuvana kolmiulotteisena kuvana.

Molemmat ryhmät harjoittelivat otsikon kaltaista kalenterilaskemistaitoa. Se osoittautui varsin helpoksi harjoiteltavaksi laskusuorituksen yksinkertaisuuden vuoksi. Tunnin kokonaisharjoitteluajalla molemmat ryhmät pystyivät vastaamaan tehtäviin alle 10 sekunnissa 80 % oikeellisuudella. Synesteetikot pesivät kuitenkin viimeisessä mittauksessa kontrolliryhmäläiset laudalta.

Tutkijat arvelivat, että autistien Savant-taitojen perusta saattaisikin liittyä synesteettisiin piirteisiin heidän kognitiossaan. Tämä mielenkiintoinen olettamus johtanee jatkotutkimuksiin.

Viitteet

Hughes, J. E., Gruffydd, E., Simner, J., & Ward, J. (2019). Synaesthetes show advantages in savant skill acquisition: Training calendar calculation in sequence-space synaesthesia. Cortex, 113, 67-82.

Kovaa peliä Bostonissa!

Tai oikeammin kalifornialaisessa vanhustentalossa.

Sosa ja Lagana (2019) jakoivat sattumanvaraisesti vanhusten toimintakeskuksen kävijät kahteen ryhmään. Toinen ryhmistä laitettiin viideksi viikoksi pelaamaan yksinkertaisia mini-pelejä tietokoneella ja toinen ryhmä toimi kontrollina.

Tutkijat mittasivat vanhusten kognitiivisia taitoja ennen ja jälkeen pelaamisen ja vertasivat ryhmien suorituksia toisiinsa. Pelanneet vanhukset paransivat selvästi suorituksiaan kognitiivisissa testeissä niissä taidoissa, joita peleissäkin tarvitaan (toiminnanohjaus, prosessointinopeus, hahmotus), mutta eivät taidoissa, joita peleissä ei tarvita.

Harjoitteluefekti oli samaa suuruusluokkaa kuin mitä on saatu tulokseksi muissakin peliharjoittelututkimuksissa. Ikä ei siis ollut esteenä taitojen kehitykselle.

Joten, hopi hopi, kaikki yli 65v, heti pelikauppaan. Lapsenlapset kyllä neuvoo, miten pelejä pelataan.

Viitteet

Sosa, G. W., & Lagana, L. (2019). The effects of video game training on the cognitive functioning of older adults: A community-based randomized controlled trial. Archives of gerontology and geriatrics, 80, 20-30.